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SUMMARY 
In our project, we parallelized the boids behavioral algorithm, which simulates the complex, aggregate 
motion of a flock of independent actors. We developed three different parallel approaches to improve 
upon the sequential algorithm: naive, octree, and spatial hash. We explored different methods of 
optimizing shared memory for finding neighbor boids between simulation ticks in order to reduce 
algorithmic complexity and improve performance as simulations ramp up in scope, including boid count 
and simulation width. On our local machine (Ryzen 7 3700X, 16 threads) we achieve a speedup of 10x, 
and on Bridges-2 our 128 core implementation achieves a maximum speedup of 234x. We demonstrate 
that the boids algorithm can be parallelized while remaining cognizant of many spatial dependencies, 
notably without sacrificing simulation fidelity through approximation. 

BACKGROUND 
Boids were first proposed by Craig W. Reynolds in his paper submission to SIGGRAPH ‘87, “Flocks, 
Herds, and Schools: A Distributed Behavioral Model.” In his words, “The aggregate motion of the 
simulated flock is the result of the dense interaction of the relatively simple behaviors of the individual 
simulated birds.” Though each boid is independently responsible for deciding the course of motion it 
takes, these decisions are informed by each boid’s local perception of their dynamic environment. The 
interplay between behavioral rules programmed into the boids and their understanding of their local 
surroundings (such as nearby boids) is what produces such compelling aggregate dynamics. 
 
In order to better understand how boid simulation can be parallelized, 
it’s first necessary to understand the basic algorithm that dictates boid 
flight planning. All boid behavior is constrained by three fundamental 
rules (or forces):  
 

1.​ Alignment (or velocity matching) 
2.​ Separation (or collision avoidance) 
3.​ Coherence (or flock centering) 

 
Boid alignment seeks to maintain a similar velocity to nearby 
flockmates. Velocity is a vector quantity, representing heading 
(orientation) and speed.  
 
Separation requires that each boid attempts to avoid flying into other 
boids. As a boid nears in spatial proximity to another, it will alter its 
heading to avoid collision.  
 
Coherence dictates that boids seek to fly closer towards nearby boids. 
More specifically, it makes a boid want to be near the center of the 
flock. Coherence causes the boid to take a heading that moves it closer 
to the centroid of nearby flockmates. 

 



To calculate these forces, each boid has to gather information from every other boid within a certain 
vision radius to determine its next action. As Reynold’s original paper points out, “A naive 
implementation of the basic flocking algorithm would grow in complexity as the order of the square of the 
flock's population ("O(N2)")... this is because each boid must reason about each of the other boids, even if 
only to decide to ignore it.” The algorithm inherently features a great deal of dependencies between all 
boids that change from one simulation tick to the next. While temporal locality is not guaranteed to be 
exploitable since each boid shifts towards and away from all other boids each tick, spatial locality is 
certainly present. Each boid is interested in other boids within a “neighbourhood sphere,” and thus an 
optimization that reduces the search space from the entire simulation volume to relevant boids in some 
rough proximity would be highly useful. 
 
Thus, it comes naturally that a potential solution to this problem is dynamic spatial binning, in which all 
boids are sorted spatially so that the neighborhood queries can be expedited. With spatial bins, a boid can 
investigate the bins nearest to itself and only those bins, rather than examining the entirety of the 
simulation space. Even better, this bin structure can be placed in shared memory – threads can query 
independently and simultaneously since they are all readers. Simultaneous writers can be enabled with 
careful attention to atomicity. What the simulation is not is amenable to SIMD execution. Individual boids 
are wildly divergent in flight behavior, and so the simulation is not suited for such parallelization 
techniques. 
 
An initial investigation into the algorithm shows that finding neighbors dominates computation time. This 
share only grows as boid counts increase. As such, we target spatial binning methods to aid in 
parallelizing adding neighbors. 
 

 
 
 
 

 



Spatial Hash: 
The spatial hash partitions the simulation box into larger cells. The boids are then hashed and binned by 
cell location. The hash table is used to provide a shortlist for information gathering, giving each boid a 
sense of which objects are possible valid influences. The hash table is updated during each time step to 
keep an accurate track of the boids. Since we parallelized the updating process of each boid, there are 
parallel writes to this data structure, so we must add additional measures to ensure thread safety.  
 
We use fine grain locking to give each 
cell its own lock. This allows for some 
parallelization as different cells of the 
hash table may be updated as boids are 
spread apart, but this greatly slows 
down as boids clump and contend for 
locks in the same cells. This issue is 
particularly emphasized as the 
coherence parameter of boids insist that 
boids will try to flock towards each 
other leading to many boids occupying similar space in the hash table. 
 
To limit contention, we can increase the number of partitions by decreasing cell size in the hash. The 
smaller cell sizes limit the number of boids possibly contending for the same cell. It also shortens the list 
of possible neighbors by limiting the search to a smaller area, closer to the boid's vision radius due to the 
smaller cell size. However, as the cells increase, we add additional memory accesses to more hashed cells. 
Since the cells are hashed, the memory accesses have poor spatial locality, so we see a great increase in 
computationally expensive cache misses. 
 

 

 



Octrees: 
Octrees are a hierarchical tree data structure where each node contains up to eight children, and are the 
three-dimensional equivalent of quadtrees. In our simulation, since we restrict the simulation bounds to a 
cubic volume, our octrees are also cubic and span the entire simulation space. Octrees serve to partition 
the global boid vector into spatially distributed nodes for O(logN) neighbor queries (per boid). When 
boids are stored into the octree, each boid traverses from the root node downwards until it finds a child 
octree that still has available capacity. If the boid reaches a leaf octree that is full, the boid will determine 
the child octant it belongs to (being one of eight subpartitions) and create a new child octree node to add 
itself to. Thus, for each level descended in the octree, the octree’s size halves across all three dimensions. 
 
Once the octree has been fully populated, 
boids can query the root for its 
neighbors. In order to facilitate this, each 
octree has an associated axis-aligned 
bounding box (AABB) which is used in 
AABB-Sphere intersection tests. The 
neighbor query function performs a 
spatial query on the entire octree, 
hierarchically pruning children octrees 
(or branches) if the intersection test 
returns a negative result. For each valid octree, the distances between stored boids and the querying boid 
are determined to narrow down true neighbors based on the neighborhood radius. 
 
In the graphics to the right, each green cube represents its corresponding octree and bounding box. For 
our implementation, we define each octree to have a capacity of eight boids; details on this decision in the 
results section. 
 

 
 

 



APPROACH 
The naive version of our code was adapted from Thomas Rouch’s implementation, explained in his 
Medium article located here. 
 
The way that Rouch’s implementation works is through the management of the “Boid” object. At each 
loop of the simulation, every boid iterates through every other boid and determines if the boid is within its 
vision proximity. If another boid is close enough, it adds that boid as a neighbor. All of the neighbor 
information within that time step is compiled into the boid. After each boid collects its neighbors they all 
go through an update step where they update their position based on compiled neighbor information and 
clears all of its neighbors in preparation for the next simulation cycle. 
 
To consistently test and gather accurate data, we had to change certain aspects of the code. For one, we 
had to ensure the code was deterministic, making our tests and simulations consistent across 
implementations to accurately gauge speedup. To accomplish this, we had to make modifications such as 
assigning a unique RNG and real distribution to each boid. We also had to change the simulation to take 
uniform time steps, or ticks, rather than using GLUT_ELAPSED_TIME as this is a register-callback 
based counter that measures wall-clock time, and is not well suited for evaluating simulations. Lastly, we 
implemented non-visual simulation (and toggle functionality) and initialization/computation time 
reporting, similar to asst3. For the graphical simulation, we have a framerate detector that measures the 
duration of performing each system evolution update. 
 
Once the simulation was repurposed for consistent benchmarking, we proceeded to apply parallelization 
techniques on the simulation. Again, an initial investigation tells us that the portion of the code that would 
benefit the most from parallelization is the information gathering stage. 
 

 
 

 

https://medium.com/better-programming/mastering-flock-simulation-with-boids-c-opengl-and-imgui-5a3ddd9cb958


For our parallelization we primarily utilized OpenMP. For our preliminary implementation of parallelism 
we deployed multiple threads to acquire a single boid and finish gathering the neighboring information. 
The boids are stored in a C++ vector in which querying for neighbors requires iterating through the 
dynamic array, comparing positions, and finally compiling neighbor information if it is within our boids 
vision. This implementation gave us very limited speedup. The addition of multiple threads iterating 
through the same vector to look for neighboring boids means that there is likely a lot of cache 
invalidations from other threads as they update their working boid with new information limiting our 
speedup. We can try to improve our speedup by adjusting the algorithm in which we find neighboring 
boids.  
 
Spatial Hashing:  
The goal with hashing was to isolate the boids that were close to the working boid without having to 
iterate through every single boid and check the distance. We accomplished this by attempting to hash the 
boids by position, this way we could just check the position of our working boid, and instantly get a grasp 
of which boids are possible neighbors. We start by partitioning the simulation area into large chunks. 
Boids are initialized in their respective positions. These positions are used to calculate their cell 
coordinates which we hash and place into a hash table. At every iteration, each working boid takes its 
own position before update and its position after update. If they populate a new cell, the hash table 
updates the boid by removing it from the old cell and placing it into the new cell.  
 
To make the hash table thread safe at first, we placed the hash table into the critical section, ensuring that 
concurrent updates to the hash table would not contaminate the information, losing or overproducing 
boids leading to undefined and erratic boid behavior. However, this was a large bottleneck in our 
implementation as updates to the hash table had to be performed sequentially. Since we were able to 
speed up the neighbor gathering phase, the update portion grew to take up a larger portion of the 
computation time. This is especially true with the non optimal memory accessing patterns associated with 
hashing meaning that updating the hash was taking a sizable chunk of computation time. 
 
To speedup the update times of the hash, we allowed for fine grain locking, locking individual cells of the 
hash instead of the whole hash table at a time. This allows for greater concurrency as multiple cells of the 
hash are now able to be updated at the same time. This leads to much better performance in some 
scenarios when the simulation width is bigger leading to more diverse and spread groups of boids. 
However in smaller simulations this change is not as noticeable as boids tend to group around similar 
clusters of cells, leading to high contention locks, limiting our capacity for parallelism. 
 

 

 



Octrees:  
The intent of using octrees is much like any other sorting data structure; incur some initial construction 
penalty to insert all input elements, and amortize this cost when searching through the completed tree. 
Octrees provide for spatial sorting across three dimensions, and are well suited for the boids neighbor 
detection task. When boids are inserted into the octree, it traverses the children octrees to which it is a 
valid member (only one octant per parent octree) until there is capacity available at a leaf node. As each 
of these octrees has an associated bounding box, when a boid searches for its neighbors, if an octree’s 
bounding box does not come within the neighborhood radius, that octree and all of its children are 
immediately ruled out, reducing the search space the boid must explore. 
 
As octrees are divided into 8 children every level, a boid searching for neighbors falls into the order of 
O(logN). In contrast, for the naive approach each boid must visit every single other boid blindly, on the 
order of O(N).  
 
To first ensure that octrees would be compatible with our project, we found a lightweight C++ 
implementation by Stefan Annell which “[functions with any] vector class and any generic data blob 
stored alongside its position.” After adapting the implementation to fit the boids simulation, we received 
promising results. An introductory sweep over increasing boid counts with all other parameters set to 
default illustrated increasing speedup over the naive implementation. In hindsight, perhaps a better test 
would be to sweep over thread counts as well to see scaling behavior. 
 
Boids 200 400 800 

Ref Speedup 122.99% 152.12% 160.57% 

 
With these results, we set out to write our own implementation of octrees, using Annell’s implementation 
as a reference. As a result of his code being entirely generic, it has rather poor readability. Our 
implementation is designed to fit our boids project exactly. When querying for neighbors, we only specify 
the AABB-Sphere intersection test used for the neighborhood radius. 
 
Thus, on each simulation tick, we construct an octree and populate it with the updated boid positions. 
After this initial cost, we enter the neighbor query phase and parallelize over boids, where each thread is 
assigned a boid and searches the octree for that boid’s neighbors. Being entirely read operations, we 
ensure thread-safety. Lastly, we parallelize over boids once more and perform a fast update using the 
boid’s neighbors. Notably, we do not parallelize the octree construction phase. This is a very clear 
bottleneck, but unpredictably destructive harmful performance at higher thread counts led us to choose 
project integrity throughout over gains at reduced cores. This is investigated in much more detail in the 
results section, where we examine sources of speedup limiting. 
 
 

 

 

https://github.com/annell/octree-cpp/tree/main


Python

RESULTS 
In our project, our primary performance metric of interest is speedup. While not critical to our results, we 
can also demonstrate frame rate improvements when rendering the simulation graphically in real-time. We 
only present total speedup, as initialization time is constant and negligible (0.006ms) across all runs. 
 
The original application, developed by Thomas Rouch and available at his public repository, is a 
graphical simulation implemented in C++ that comes with knobs for specifying a number of parameters, 
such as boid count, separation, cohesion, and alignment. To limit our experimental space, we keep the 
default separation/cohesion/alignment coefficients, and discard obstacles and targets that his repository 
also provides. We find that results with these knobs succeed in generating compelling flock behavior. 
However, these knobs can absolutely affect parallelization performance, and could be explored in future 
works. For example, increasing cohesion and separation hypothetically leads to spread-out boids clustered 
in the same general spatial region, which could worsen octree performance by incurring more false 
queries.  
 
In addition to the many knobs the base application comes with, we introduce the following input 
parameters that are specified at runtime: 
 

●​ -i implementation (naive|octree|hash) 
●​ -n number of threads 
●​ -b number of boids 
●​ -t (simulation) time in ticks 
●​ -w (simulation) width 
●​ -s seed 

 
Besides the other parameters whose use is obvious, specifying a seed ensures a simulation is guaranteed 
fully deterministic from one run to the next (assuming stable boid count throughout the simulation), 
which is critical for meaningful results gathering. Each boid is assigned its own seed (based on the input 
seed), random number generator, and uniform_real_distribution for controllably-random behavior, while 
ensuring thread-safety. 
 
We use these parameters to shape our experiments in order to explore parallelization effects across our 
experimental space. Once the simulation completes, parameters and results are logged to 
simulation_results.csv, with some results such as initialization and computation time also printed to the 
terminal. 

# Runs a simulation using spatial hashing and 128 threads on 1600 boids for 2000 ticks in a boundary space of 
100x100x100 with seed 999 
./main -i hash -n 128 -b 1600 -t 2000 -w 100 -s 999 

Additionally, we created a git branch that strips all visualization functionality (and heavy graphics 
packages) from the project so that it can be run on PSC’s Bridges-2. This pure simulation branch is what 
we will submit. 

 

https://github.com/ThomasParistech/boids


PSC RESULTS: 
The bulk of our experimentation is conducted on the Bridges-2 cluster. Interested in ramping simulation 
complexity, we conduct three sweeps over increasing boid counts. 
 
200 BOIDS 
In this first experiment we see that the naive implementation demonstrates the best scaling relative to 
single-core performance, but spatial hashing scaling keeps up, while actually performing better relative to 
the sequential simulation. 

 
 
 

 
 
 
 
 
 
 
 
 
Remarkably, octree performs quite poorly in comparison to the other two implementations, leading us to 

lead further inquiry and collect more data. 

 



When rerunning the 200 boids test for the octree implementation, we discovered that the construction of 
the octree structure was constant time despite computation time scaling quite well with increasing thread 
count. This proves a very large bottleneck and severely limits the overall speedup available to us via 
Amdahl’s law. Of course, this was logical as we did not parallelize the construction of the octree. We first 
considered hand-over-hand locking, but realized fine-grained locking would reduce the critical section 
further; instead of locking an entire node (or two at a time), we can lock just the data field when adding 
boids, and lock the children field when creating a new leaf node.  
 
However, once we reran with our lightweight parallelism locally, we anecdotally noted worse overall 
performance, particularly for octree construction time. While low threads resulted in similar octree 
construction times, as threads approached 16, construction worsened by several factors. Having not 
recorded results, we tried sweeping over the PSC 200 boids test mentioned above to provide quantitative 
backing, only to discover that construction time generally improves with fine-grained locking and 
parallelism, but seemed to explode at the maximum thread count. 
 

octree (fine-grained locking) 

Threads 1 2 4 8 16 32 64 128 

Octree 
Construction Time 3.109 1.892 1.381 1.004 0.797 0.715 0.869 3.235 

 
Hoping to confirm this was not a fluke, we ran on 128 threads numerous more times, only to yield wildly 
divergent results, ranging from ~1.7s to ~100s. 
 
Run # 1 2 3 4 5 6 7 

Octree 
Construction Time 7.11 3.93 1.73 2.51 25.35 25.49 25.83 

Neighbor Query 
Time 8.18 5.19 2.82 3.71 78.74 79.47 78.11 

Update Time 6.39 3.24 1.07 1.87 47.07 47.27 47.38 

Computation Time 21.68 12.36 5.62 8.08 151.15 152.24 151.32 

Even worse, it appeared that whatever was causing this terrible behavior would leak over and affect both 
neighbor query and boid update times, the latter being especially absurd considering it was previously 
only 5% of the computation time at worst and entirely sequential. Computation times were in the range of 
~5.6s to over 150s. 
 
It is possible that lock contention and cache thrashing became suddenly significant at 128 threads, leading 
to performance degradation. To address this, we attempt to limit the maximum number of threads allowed 
to construct the octree in parallel. When running with #pragma omp parallel for 
num_threads(64) over the construction loop, 128-threaded performance would exhibit the same 
divergent behavior, and now 64 thread performance showcased similar issues. 
 

 



Unable to pin why this occurred, we ultimately chose to leave the octree construction section sequential, 
as the sudden, unpredictable, and massive performance hits meant keeping the error-prone parallelization 
was untenable. Future work would benefit from a much closer look into this strange behavior. 
 
Using perf stat, we also collected cache miss statistics for the entire sweep. Octree actually demonstrates 
the best caching at scale, whereas the spatial hash is substantially worse when it comes to caching. The 
hash implementation’s cache misses in the previous figures were truncated so as to not dwarf the visibility 
of naive  and octree implementations. 
 
Here are some tables that illustrate it better: 

Total cache misses (4000 ticks, 200 boids) 

Threads 1 2 4 8 16 32 64 128 

Naive 1,251,314 5,574,325 11,829,695 22,408,695 42,371,858 76,685,704 134,967,450 199,238,333 

Octree 2,180,504 7,108,352 12,281,346 22,401,078 39,311,858 67,959,445 106,660,847 152,210,972 

Hash 3,080,390,070 2,877,761,072 2,765,864,260 3,073,198,844 2,746,998,359 2,885,990,265 2,948,778,134 2,795,844,352 

 
Per-thread cache misses (4000 ticks, 200 boids) 

Threads 1 2 4 8 16 32 64 128 

Naive 1,251,314 2,787,163 2,957,424 2,801,087 2,648,241 2,396,428 2,108,866 1,556,549 

Octree 2,180,504 3,554,176 3,070,337 2,800,135 2,456,991 2,123,733 1,666,576 1,189,148 

Hash 3,080,390,070 1,438,880,536 691,466,065 384,149,856 171,687,397 90,187,196 46,074,658 21,842,534 

 
Despite exhibiting nearly 14x more total cache misses than the other implementations at its most 
favorable comparison (128 threads, hash vs. naive), a fascinating result is that total cache misses remain 
fairly constant across different thread counts. The vast increase in cache missing is likely due to the 
erratic memory access patterns associated with hashing. Since the cache misses are constantly occurring 
due to the poor spatial locality of hash access, there is little increase in cache misses due to increasing 
thread counts. Even if cache lines are missed due to coherence misses, they are unlikely to play a 
substantial part in the large number of misses due to hashing. 
 
800 BOIDS 
To cut down on evaluation time, simulation duration is cut down from 4000 ticks to 2000 ticks, and 
single-core simulations are not evaluated (besides the sequential implementation). 
 
With increased simulation complexity coming in the form of 4x more boids (and thus increased 
dependencies), we see that the octree and hashing implementations begin to leverage their algorithmic 
advantage over the naive implementation. The octree demonstrates the best performance at reduced core 
counts, but does not show the same continued scaling capability as the spatial hashing implementation 
does. Cache miss behavior is largely the same, with octrees illustrating improved cache utilization as 
cores increase, while total misses remain constant across threads for spatial hashing. 
 

 



Total cache misses (2000 ticks, 800 boids) 

Threads 2 4 8 16 32 64 128 

Naive 13,261,593 22,504,727 42,618,480 81,636,151 155,463,346 283,892,482 520,525,252 

Octree 25,977,207 26,819,100 44,656,258 81,514,100 150,892,628 249,239,577 382,251,814 

Hash 18,393,235,527 22,640,998,683 22,959,956,709 24,258,473,898 23,013,180,671 23,942,747,965 21,577,427,903 

 
Per-thread cache misses (2000 ticks, 800 boids) 

Threads 2 4 8 16 32 64 128 

Naive 6,630,797 5,626,182 5,327,310 5,102,259 4,858,230 4,435,820 4,066,604 

Octree 25,977,207 26,819,100 44,656,258 81,514,100 150,892,628 249,239,577 382,251,814 

Hash 9,196,617,764 5,660,249,671 2,869,994,589 1,516,154,619 719,161,896 374,105,437 168,573,655 

 

 



1600 BOIDS 
In addition to doubling the boids from the last 
experiment, we also increase the size of the bounds 
to cumulatively represent a highly complex 
simulation scenario. We do not run the experiment 
on thread counts lower than 16 to reduce overall 
evaluation time, with the exception of the 
sequential implementation, which took nearly 40 
minutes to complete. 
 
In this final experiment on Bridges-2, the spatial 
hash implementation shines, scaling much better 
than the  other two implementations given a more 
complex scenario. While intra-implementation speedup trends largely mirror previous results, we see that 
the naive implementation plateaus at 128 cores. Compared to the sequential implementation, we see that 
both binning implementations outperform the naive implementation, but the spatial hashing 
implementation demonstrates superscaling across all thread count configurations. We can likely attribute 
this superscaling behavior to the improved algorithmic complexity of our binning methods. The added 
caches are not likely to help hashing as the misses are occurring due to non optimal memory access rather 
than capacity. The octree implementation also demonstrates superscaling to a lesser degree, and falls off 
quicker. It likely falls off because of a bottleneck in sequential octree construction, limiting the scalability 
of the implementation for high thread counts. While the spatial hashing implementation’s results indicate 
that it would not maintain the superscaling into even greater thread counts, it stands heads above the 
competition as simulation complexity multiplies. 

 
 
 

 



LOCAL RESULTS: 
The machine we used to evaluate locally is equipped with a Ryzen 7 3700X CPU, which has 8 cores and 
16 total threads. As we were running our simulations in WSL, we did not have access to hardware 
performance counters and thus did not report cache statistics for these tests. 
One parameter we have yet to isolate and explore is simulation width. This parameter directly contributes 
to the sparsity of the data, which we hypothesized that spatial binning would improve, by reducing the 
number of neighbor candidates considered per each boid. 
 

WIDTH = 25.0 

 
 

WIDTH = 50.0 

 
 

 



WIDTH = 100.0 

 
 
As the results show, as the simulation boundaries expand, spatial binning further demonstrates its 
advantage in sparse boid environments. When the simulation is tightly constrained, boids are extremely 
likely to be neighbors with each other (especially for the default neighborhood radius = 10.0), so the 
advantage of shortlisting candidate boids becomes less pronounced. For the octree and hash 
implementations, this just means extra overhead just to manually double-check the near-same quantity of 
candidate boids. As the space expands and boids 
fly more freely, narrowing down the number of 
initial candidate neighbors becomes much more 
crucial. 
 
Following this thread, we sweep over boid count 
as well, this time keeping simulation width fixed 
at 50. We see a similar trend, where the binning 
algorithms show improved performance for 
simulations involving higher boid counts. The 
naive algorithm faces O(N2) candidates for each 
simulation tick, while the octree and spatial hash 
consider candidates on the order of O(NlogN) 
every simulation tick. 
 
We can conclude that our spatial binning 
approaches are effective at handling increasing 
simulation complexity, particularly boid counts 
and simulation boundary size. 
 
Two last parameters to sweep over are specific 
to the binning implementations. As alluded to 
prior, octrees are constrained to have capacity 
for exactly 8 elements. In this experiment, we 
sweep over boids allotted per octree node. 

 



Overall, we see minimal difference between the allotments, but we choose capacity to be eight for all of 
our other experiments. 

 
Secondly, we sweep over spatial hash cell size. Cell size allows us to have some more precision when 
developing a shortened list of neighborhood 
candidates. The smaller we make the cell size, 
the more certain we can be that the nearby 
hashed cells contain boids within the working 
boid’s vision. However, as we decrease cell size, 
we are also increasing the number of hash 
lookups needed to find possible neighbors. 
Hashing has poor locality, so decreasing the cell 
size can lead to an extreme increase in expensive 
memory access. We try to find an appropriate 
middle ground to conduct our results gathering 
on. With these parameters, we determine that 8 
is the best cell size. 
 

RESULTS CONCLUSION: 
In our project proposal, we set out to accomplish the following set of objectives: 

1.​ Optimize the boid simulation using binning techniques to reduce neighbor querying 
2.​ Achieve an amortized algorithmic complexity of O(NlogN) for N boids 
3.​ Ultimately achieve a total speedup of 10x over the sequential implementation on 8 cores, 

surpassing the ideal 8x via intelligent shared memory usage 
 
On all accounts, we have achieved these initial goals. We explored two different approaches, being 
octrees and spatial hashing for improved neighbor querying, and presented results that demonstrate 
impressive scaling for increasingly complex simulation schemes, such as increased boid counts and 
simulation boundary sizes. For the 800 boids experiment on Bridges-2, we saw both the octree and hash 
approaches attain speedups over 10x compared to the sequential implementation (naive only achieved 
~4x), and in our most complex experiment of 1600 boids with simulation width = 100, octree and spatial 
hashing improved significantly over the naive approach. Spatial hashing has shown itself to be very well 
suited for this task, achieving a maximum 234x speedup on 128 threads in that experiment.  For scaling 
the simulation to larger widths and boid counts, hashing provides the best improvement with low 
overhead and great pruning benefits. Our octrees approach could use some further optimization in octree 
construction. Currently the construction is sequential, greatly hindering our capacity for speedup 
especially as the simulation scales to more involved and complex scenarios. Further investigation will be 
taken. 
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