PARALLELIZED BOID SIMULATION

Josiah Miggiani, Ryan Huang

SUMMARY

In our project, we parallelized the boids behavioral algorithm, which simulates the complex, aggregate
motion of a flock of independent actors. We developed three different parallel approaches to improve
upon the sequential algorithm: naive, octree, and spatial hash. We explored different methods of
optimizing shared memory for finding neighbor boids between simulation ticks in order to reduce
algorithmic complexity and improve performance as simulations ramp up in scope, including boid count
and simulation width. On our local machine (Ryzen 7 3700X, 16 threads) we achieve a speedup of 10x,
and on Bridges-2 our 128 core implementation achieves a maximum speedup of 234x. We demonstrate
that the boids algorithm can be parallelized while remaining cognizant of many spatial dependencies,
notably without sacrificing simulation fidelity through approximation.

BACKGROUND

Boids were first proposed by Craig W. Reynolds in his paper submission to SIGGRAPH 87, “Flocks,
Herds, and Schools: A Distributed Behavioral Model.” In his words, “The aggregate motion of the
simulated flock is the result of the dense interaction of the relatively simple behaviors of the individual
simulated birds.” Though each boid is independently responsible for deciding the course of motion it
takes, these decisions are informed by each boid’s local perception of their dynamic environment. The
interplay between behavioral rules programmed into the boids and their understanding of their local
surroundings (such as nearby boids) is what produces such compelling aggregate dynamics.

In order to better understand how boid simulation can be parallelized, p ﬁhgnmem
it’s first necessary to understand the basic algorithm that dictates boid \>
flight planning. All boid behavior is constrained by three fundamental ' h

rules (or forces):

1. Alignment (or velocity matching)
2. Separation (or collision avoidance)
3. Coherence (or flock centering)

Boid alignment seeks to maintain a similar velocity to nearby
flockmates. Velocity is a vector quantity, representing heading
(orientation) and speed.

Separation requires that each boid attempts to avoid flying into other
boids. As a boid nears in spatial proximity to another, it will alter its
heading to avoid collision.

Coherence dictates that boids seek to fly closer towards nearby boids.] \
More specifically, it makes a boid want to be near the center of the f_\, ' '
flock. Coherence causes the boid to take a heading that moves it closer

to the centroid of nearby flockmates. 4

To calculate these forces, each boid has to gather information from every other boid within a certain
vision radius to determine its next action. As Reynold’s original paper points out, “A naive
implementation of the basic flocking algorithm would grow in complexity as the order of the square of the
flock's population ("O(N?)")... this is because each boid must reason about each of the other boids, even if
only to decide to ignore it.” The algorithm inherently features a great deal of dependencies between all
boids that change from one simulation tick to the next. While temporal locality is not guaranteed to be
exploitable since each boid shifts towards and away from all other boids each tick, spatial locality is
certainly present. Each boid is interested in other boids within a “neighbourhood sphere,” and thus an
optimization that reduces the search space from the entire simulation volume to relevant boids in some
rough proximity would be highly useful.

Thus, it comes naturally that a potential solution to this problem is dynamic spatial binning, in which all
boids are sorted spatially so that the neighborhood queries can be expedited. With spatial bins, a boid can
investigate the bins nearest to itself and only those bins, rather than examining the entirety of the
simulation space. Even better, this bin structure can be placed in shared memory — threads can query
independently and simultaneously since they are all readers. Simultaneous writers can be enabled with
careful attention to atomicity. What the simulation is not is amenable to SIMD execution. Individual boids
are wildly divergent in flight behavior, and so the simulation is not suited for such parallelization
techniques.

An initial investigation into the algorithm shows that finding neighbors dominates computation time. This
share only grows as boid counts increase. As such, we target spatial binning methods to aid in
parallelizing adding neighbors.

Boid Count vs. Share of Computation Time
B Adding neighbors [Updating boids

100
97.8 98.6
X
© 75
E
[
s 50
®
5
g— 25
15} 22 1.7 1.4
O
0
200 400 600 800 1000

Boid count

Spatial Hash:

The spatial hash partitions the simulation box into larger cells. The boids are then hashed and binned by
cell location. The hash table is used to provide a shortlist for information gathering, giving each boid a
sense of which objects are possible valid influences. The hash table is updated during each time step to
keep an accurate track of the boids. Since we parallelized the updating process of each boid, there are
parallel writes to this data structure, so we must add additional measures to ensure thread safety.

We use fine grain locking to give each
cell its own lock. This allows for some
parallelization as different cells of the
hash table may be updated as boids are
spread apart, but this greatly slows
down as boids clump and contend for
locks in the same cells. This issue is
particularly emphasized as the
coherence parameter of boids insist that
boids will try to flock towards each

other leading to many boids occupying similar space in the hash table.

To limit contention, we can increase the number of partitions by decreasing cell size in the hash. The
smaller cell sizes limit the number of boids possibly contending for the same cell. It also shortens the list
of possible neighbors by limiting the search to a smaller area, closer to the boid's vision radius due to the
smaller cell size. However, as the cells increase, we add additional memory accesses to more hashed cells.
Since the cells are hashed, the memory accesses have poor spatial locality, so we see a great increase in
computationally expensive cache misses.

Octrees:

Octrees are a hierarchical tree data structure where each node contains up to eight children, and are the
three-dimensional equivalent of quadtrees. In our simulation, since we restrict the simulation bounds to a
cubic volume, our octrees are also cubic and span the entire simulation space. Octrees serve to partition
the global boid vector into spatially distributed nodes for O(logN) neighbor queries (per boid). When
boids are stored into the octree, each boid traverses from the root node downwards until it finds a child
octree that still has available capacity. If the boid reaches a leaf octree that is full, the boid will determine
the child octant it belongs to (being one of eight subpartitions) and create a new child octree node to add
itself to. Thus, for each level descended in the octree, the octree’s size halves across all three dimensions.

Once the octree has been fully populated,
boids can query the root for its
neighbors. In order to facilitate this, each
octree has an associated axis-aligned
bounding box (AABB) which is used in
AABB-Sphere intersection tests. The
neighbor query function performs a
spatial query on the entire octree,

hierarchically pruning children octrees
(or branches) if the intersection test
returns a negative result. For each valid octree, the distances between stored boids and the querying boid
are determined to narrow down true neighbors based on the neighborhood radius.

In the graphics to the right, each green cube represents its corresponding octree and bounding box. For
our implementation, we define each octree to have a capacity of eight boids; details on this decision in the
results section.

TICK: 2267 TICK: 2267
: —— FPS: 61

APPROACH

The naive version of our code was adapted from Thomas Rouch’s implementation, explained in his
Medium article located here.

The way that Rouch’s implementation works is through the management of the “Boid” object. At each
loop of the simulation, every boid iterates through every other boid and determines if the boid is within its
vision proximity. If another boid is close enough, it adds that boid as a neighbor. All of the neighbor
information within that time step is compiled into the boid. After each boid collects its neighbors they all
go through an update step where they update their position based on compiled neighbor information and
clears all of its neighbors in preparation for the next simulation cycle.

To consistently test and gather accurate data, we had to change certain aspects of the code. For one, we
had to ensure the code was deterministic, making our tests and simulations consistent across
implementations to accurately gauge speedup. To accomplish this, we had to make modifications such as
assigning a unique RNG and real distribution to each boid. We also had to change the simulation to take
uniform time steps, or ticks, rather than using GLUT ELAPSED TIME as this is a register-callback
based counter that measures wall-clock time, and is not well suited for evaluating simulations. Lastly, we
implemented non-visual simulation (and toggle functionality) and initialization/computation time
reporting, similar to asst3. For the graphical simulation, we have a framerate detector that measures the
duration of performing each system evolution update.

Once the simulation was repurposed for consistent benchmarking, we proceeded to apply parallelization
techniques on the simulation. Again, an initial investigation tells us that the portion of the code that would
benefit the most from parallelization is the information gathering stage.

Boid Count vs. Share of Computation Time
B Adding neighbors [Updating boids

100
< 943 96.8 97.8 98.6
v 75

E

l_

5§ 50

=

=]

& 25

E 5.7 3.1 22 17 14
0

200 400 600 800 1000

Boid count

https://medium.com/better-programming/mastering-flock-simulation-with-boids-c-opengl-and-imgui-5a3ddd9cb958

For our parallelization we primarily utilized OpenMP. For our preliminary implementation of parallelism
we deployed multiple threads to acquire a single boid and finish gathering the neighboring information.
The boids are stored in a C++ vector in which querying for neighbors requires iterating through the
dynamic array, comparing positions, and finally compiling neighbor information if it is within our boids
vision. This implementation gave us very limited speedup. The addition of multiple threads iterating
through the same vector to look for neighboring boids means that there is likely a lot of cache
invalidations from other threads as they update their working boid with new information limiting our
speedup. We can try to improve our speedup by adjusting the algorithm in which we find neighboring
boids.

Spatial Hashing:

The goal with hashing was to isolate the boids that were close to the working boid without having to
iterate through every single boid and check the distance. We accomplished this by attempting to hash the
boids by position, this way we could just check the position of our working boid, and instantly get a grasp
of which boids are possible neighbors. We start by partitioning the simulation area into large chunks.
Boids are initialized in their respective positions. These positions are used to calculate their cell
coordinates which we hash and place into a hash table. At every iteration, each working boid takes its
own position before update and its position after update. If they populate a new cell, the hash table
updates the boid by removing it from the old cell and placing it into the new cell.

To make the hash table thread safe at first, we placed the hash table into the critical section, ensuring that
concurrent updates to the hash table would not contaminate the information, losing or overproducing
boids leading to undefined and erratic boid behavior. However, this was a large bottleneck in our
implementation as updates to the hash table had to be performed sequentially. Since we were able to
speed up the neighbor gathering phase, the update portion grew to take up a larger portion of the
computation time. This is especially true with the non optimal memory accessing patterns associated with
hashing meaning that updating the hash was taking a sizable chunk of computation time.

To speedup the update times of the hash, we allowed for fine grain locking, locking individual cells of the
hash instead of the whole hash table at a time. This allows for greater concurrency as multiple cells of the
hash are now able to be updated at the same time. This leads to much better performance in some
scenarios when the simulation width is bigger leading to more diverse and spread groups of boids.
However in smaller simulations this change is not as noticeable as boids tend to group around similar
clusters of cells, leading to high contention locks, limiting our capacity for parallelism.

Octrees:

The intent of using octrees is much like any other sorting data structure; incur some initial construction
penalty to insert all input elements, and amortize this cost when searching through the completed tree.
Octrees provide for spatial sorting across three dimensions, and are well suited for the boids neighbor
detection task. When boids are inserted into the octree, it traverses the children octrees to which it is a
valid member (only one octant per parent octree) until there is capacity available at a leaf node. As each
of these octrees has an associated bounding box, when a boid searches for its neighbors, if an octree’s
bounding box does not come within the neighborhood radius, that octree and all of its children are
immediately ruled out, reducing the search space the boid must explore.

As octrees are divided into 8 children every level, a boid searching for neighbors falls into the order of
O(logN). In contrast, for the naive approach each boid must visit every single other boid blindly, on the
order of O(N).

To first ensure that octrees would be compatible with our project, we found a lightweight C++
implementation by Stefan Annell which “[functions with any] vector class and any generic data blob
stored alongside its position.” After adapting the implementation to fit the boids simulation, we received
promising results. An introductory sweep over increasing boid counts with all other parameters set to
default illustrated increasing speedup over the naive implementation. In hindsight, perhaps a better test
would be to sweep over thread counts as well to see scaling behavior.

Boids 200 400 800
Ref Speedup 122.99% 152.12% 160.57%

With these results, we set out to write our own implementation of octrees, using Annell’s implementation
as a reference. As a result of his code being entirely generic, it has rather poor readability. Our
implementation is designed to fit our boids project exactly. When querying for neighbors, we only specify
the AABB-Sphere intersection test used for the neighborhood radius.

Thus, on each simulation tick, we construct an octree and populate it with the updated boid positions.
After this initial cost, we enter the neighbor query phase and parallelize over boids, where each thread is
assigned a boid and searches the octree for that boid’s neighbors. Being entirely read operations, we
ensure thread-safety. Lastly, we parallelize over boids once more and perform a fast update using the
boid’s neighbors. Notably, we do not parallelize the octree construction phase. This is a very clear
bottleneck, but unpredictably destructive harmful performance at higher thread counts led us to choose
project integrity throughout over gains at reduced cores. This is investigated in much more detail in the
results section, where we examine sources of speedup limiting.

https://github.com/annell/octree-cpp/tree/main

RESULTS

In our project, our primary performance metric of interest is speedup. While not critical to our results, we
can also demonstrate frame rate improvements when rendering the simulation graphically in real-time. We
only present total speedup, as initialization time is constant and negligible (0.006ms) across all runs.

The original application, developed by Thomas Rouch and available at his public repository, is a

graphical simulation implemented in C++ that comes with knobs for specifying a number of parameters,
such as boid count, separation, cohesion, and alignment. To limit our experimental space, we keep the
default separation/cohesion/alignment coefficients, and discard obstacles and targets that his repository
also provides. We find that results with these knobs succeed in generating compelling flock behavior.
However, these knobs can absolutely affect parallelization performance, and could be explored in future
works. For example, increasing cohesion and separation hypothetically leads to spread-out boids clustered
in the same general spatial region, which could worsen octree performance by incurring more false
queries.

In addition to the many knobs the base application comes with, we introduce the following input
parameters that are specified at runtime:

-1 implementation (naive|octree|hash)
-n number of threads

-b number of boids

-t (simulation) time in ticks

-w (simulation) width

-s seed

Besides the other parameters whose use is obvious, specifying a seed ensures a simulation is guaranteed
fully deterministic from one run to the next (assuming stable boid count throughout the simulation),
which is critical for meaningful results gathering. Each boid is assigned its own seed (based on the input
seed), random number generator, and uniform_real distribution for controllably-random behavior, while
ensuring thread-safety.

We use these parameters to shape our experiments in order to explore parallelization effects across our
experimental space. Once the simulation completes, parameters and results are logged to
simulation_results.csv, with some results such as initialization and computation time also printed to the
terminal.

Python

Runs a simulation using spatial hashing and 128 threads on 1600 boids for 2000 ticks in a boundary space of
100x100x100 with seed 999
./main -i hash -n 128 -b 1600 -t 2000 -w 100 -s 999

Additionally, we created a git branch that strips all visualization functionality (and heavy graphics
packages) from the project so that it can be run on PSC’s Bridges-2. This pure simulation branch is what
we will submit.

https://github.com/ThomasParistech/boids

PSC RESULTS:

The bulk of our experimentation is conducted on the Bridges-2 cluster. Interested in ramping simulation

complexity, we conduct three sweeps over increasing boid counts.

200 BOIDS

In this first experiment we see that the naive implementation demonstrates the best scaling relative to

single-core performance, but spatial hashing scaling keeps up, while actually performing better relative to

the sequential simulation.

Threads vs. Total Speedup [PSC] Threads vs. Total Speedup over Sequential [PSC]
boids=200, ticks=4000, width=50.0, seed=0 boids=200, ticks=4000, width=50.0, seed=0
B Naive [Octree Spatial Hash I Naive [l Octree Spatial Hash
60 60
=
g
&
o 40 % 40
3 e
g s
2 E3
8 3
° 20 g 20
2]
g
=
0 0
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Threads Threads
Threads vs. Per-thread Cache Misses [PSC]
boids=200, ticks=4000, width=50.0, seed=0
B Naive [l Octree Spatial Hash
4,000,000
3,000,000
2,000,000
1,000,000
0
1 2 4 16 32 64 128
Threads

Remarkably, octree performs quite poorly in comparison to the other two implementations, leading us to
lead further inquiry and collect more data.

Threads vs. Computation Time Breakdown [PSC]
boids=200, ticks=4000, width=50.0, seed=0

B Octree Add Time [l Neighbor Query Time Computation Time

125.000

100.000

. 75.000
G
g

E 50000

26,000

3.049)|| 3078}/ | 3.067/| 3065 3065 3068 3076 3.102
0.000 - - - il el .8 .=
1 2 4 8 16 32 64 128

Threads

Threads vs. Octree Construction % [PSC]
boids=200, ticks=4000, width=50.0, seed=0

60.00%

40.00%

20.00%

Computation Time %

0.00%
1 2 4 8 16 32 64

Threads

128

When rerunning the 200 boids test for the octree implementation, we discovered that the construction of
the octree structure was constant time despite computation time scaling quite well with increasing thread
count. This proves a very large bottleneck and severely limits the overall speedup available to us via
Amdahl’s law. Of course, this was logical as we did not parallelize the construction of the octree. We first
considered hand-over-hand locking, but realized fine-grained locking would reduce the critical section
further; instead of locking an entire node (or two at a time), we can lock just the data field when adding
boids, and lock the children field when creating a new leaf node.

However, once we reran with our lightweight parallelism locally, we anecdotally noted worse overall
performance, particularly for octree construction time. While low threads resulted in similar octree
construction times, as threads approached 16, construction worsened by several factors. Having not
recorded results, we tried sweeping over the PSC 200 boids test mentioned above to provide quantitative
backing, only to discover that construction time generally improves with fine-grained locking and
parallelism, but seemed to explode at the maximum thread count.

octree (fine-grained locking)

Threads 1 2 4 8 16 32 64 128
Octree
Construction Time 3.109 1.892 1.381 1.004 0.797 0.715 0.869 3.235

Hoping to confirm this was not a fluke, we ran on 128 threads numerous more times, only to yield wildly
divergent results, ranging from ~1.7s to ~100s.

Run # 1 2 3 4 5 6 7
Octree

Construction Time 7.11 3.93 1.73 2.51 25.35 25.49 25.83
Neighbor Query

Time 8.18 5.19 2.82 3.71 78.74 79.47 78.11
Update Time 6.39 3.24 1.07 1.87 47.07 47.27 47.38
Computation Time 21.68 12.36 5.62 8.08 151.15 152.24 151.32

Even worse, it appeared that whatever was causing this terrible behavior would leak over and affect both
neighbor query and boid update times, the latter being especially absurd considering it was previously
only 5% of the computation time at worst and entirely sequential. Computation times were in the range of
~5.6s to over 150s.

It is possible that lock contention and cache thrashing became suddenly significant at 128 threads, leading
to performance degradation. To address this, we attempt to limit the maximum number of threads allowed
to construct the octree in parallel. When running with #pragma omp parallel for
num_threads (64) over the construction loop, 128-threaded performance would exhibit the same
divergent behavior, and now 64 thread performance showcased similar issues.

Unable to pin why this occurred, we ultimately chose to leave the octree construction section sequential,
as the sudden, unpredictable, and massive performance hits meant keeping the error-prone parallelization
was untenable. Future work would benefit from a much closer look into this strange behavior.

Using perf stat, we also collected cache miss statistics for the entire sweep. Octree actually demonstrates
the best caching at scale, whereas the spatial hash is substantially worse when it comes to caching. The
hash implementation’s cache misses in the previous figures were truncated so as to not dwarf the visibility
of naive and octree implementations.

Here are some tables that illustrate it better:
Total cache misses (4000 ticks, 200 boids)

Threads 1 2 4 8 16 32 64 128
Naive 1,251,314 5574325 11,829,695 22,408,695 42,371,858 76,685,704 134,967,450 199,238,333
Octree 2,180,504 7,108,352 12,281,346 22,401,078 39,311,858 67,959,445 106,660,847 152,210,972
Hash 3,080,390,070 2,877,761,072 2,765,864,260 3,073,198,844 2,746,998,359 2,885,990,265 2,948,778,134 2,795,844,352

Per-thread cache misses (4000 ticks, 200 boids)

Threads 1 2 4 8 16 32 64 128
Naive 1,251,314 2,787,163 2,957,424 2,801,087 2,648,241 2,396,428 2,108,866 1,556,549
Octree 2,180,504 3,554,176 3,070,337 2,800,135 2,456,991 2,123,733 1,666,576 1,189,148
Hash 3,080,390,070 1,438,880,536 691,466,065 384,149,856 171,687,397 90,187,196 46,074,658 21,842,534

Despite exhibiting nearly 14x more total cache misses than the other implementations at its most
favorable comparison (128 threads, hash vs. naive), a fascinating result is that total cache misses remain
fairly constant across different thread counts. The vast increase in cache missing is likely due to the
erratic memory access patterns associated with hashing. Since the cache misses are constantly occurring
due to the poor spatial locality of hash access, there is little increase in cache misses due to increasing
thread counts. Even if cache lines are missed due to coherence misses, they are unlikely to play a
substantial part in the large number of misses due to hashing.

800 BOIDS
To cut down on evaluation time, simulation duration is cut down from 4000 ticks to 2000 ticks, and
single-core simulations are not evaluated (besides the sequential implementation).

With increased simulation complexity coming in the form of 4x more boids (and thus increased
dependencies), we see that the octree and hashing implementations begin to leverage their algorithmic
advantage over the naive implementation. The octree demonstrates the best performance at reduced core
counts, but does not show the same continued scaling capability as the spatial hashing implementation
does. Cache miss behavior is largely the same, with octrees illustrating improved cache utilization as
cores increase, while total misses remain constant across threads for spatial hashing.

Total cache misses (2000 ticks, 800 boids)
Threads 2 4 8 16 32 64 128
Naive 13,261,593 22,504,727 42,618,480 81,636,151 155,463,346 283,892,482 520,525,252
Octree 25,977,207 26,819,100 44,656,258 81,514,100 150,892,628 249,239,577 382,251,814
Hash 18393,235,527 22,640,998,683 22,959,956,709 24,258,473,898 23,013,180,671 23,942,747,965 21,577,427,903
Per-thread cache misses (2000 ticks, 800 boids)
Threads 2 4 8 16 32 64 128
Naive 6,630,797 5,626,182 5,327,310 5,102,259 4,858,230 4,435,820 4,066,604
Octree 25,977,207 26,819,100 44,656,258 81,514,100 150,892,628 249,239,577 382,251,814
Hash 9,196,617,764 5,660,249,671 2,869,994,589 1,516,154,619 719,161,896 374,105,437 168,573,655

Threads vs. Per-thread Cache Misses [PSC]

boids=800

Per-thread Cache Misses

15,000,000

10,000,000

5,000,000

ticks=2000

width=50.0

@ Naive [Octree

seed=999

Threads vs. Total Speedup [PSC]
boids=800, ticks=2000, width=50.0, seed=999
Spatial Hash B Naive [l Octree
40
30
o
S
]
o
e 20
2]
K]
o
=10
0
16 32 64 128 2 4 16
Threads Threads

Spatial Hash

32

64

128

Total Speedup over Sequential

125

100

75

50

Threads vs. Total Speedup over Sequential [PSC]
boids=800, ticks=2000, width=50.0, seed=999

B Naive [Octree Spatial Hash

_an off II ll
8 16 32 64

Threads

128

1600 BOIDS

In addition to doubling the boids from the last
experiment, we also increase the size of the bounds
to cumulatively represent a highly complex
simulation scenario. We do not run the experiment
on thread counts lower than 16 to reduce overall
evaluation time, with the exception of the
sequential implementation, which took nearly 40
minutes to complete.

In this final experiment on Bridges-2, the spatial
hash implementation shines, scaling much better
than the other two implementations given a more

Threads vs. Total Speedup (normalized to 16 threads) [PSC]

boids=1600, ticks=2000, width=100.0, seed

B Naive [l Octree Spatial Hash

6.00

>
o
=]

IN)
o
=]

Total Speedup

16 32 64 128

Threads

complex scenario. While intra-implementation speedup trends largely mirror previous results, we see that

the naive implementation plateaus at 128 cores. Compared to the sequential implementation, we see that

both binning implementations outperform the naive implementation, but the spatial hashing
implementation demonstrates superscaling across all thread count configurations. We can likely attribute

this superscaling behavior to the improved algorithmic complexity of our binning methods. The added

caches are not likely to help hashing as the misses are occurring due to non optimal memory access rather

than capacity. The octree implementation also demonstrates superscaling to a lesser degree, and falls off

quicker. It likely falls off because of a bottleneck in sequential octree construction, limiting the scalability
of the implementation for high thread counts. While the spatial hashing implementation’s results indicate

that it would not maintain the superscaling into even greater thread counts, it stands heads above the

competition as simulation complexity multiplies.

Threads vs. Total Speedup over Sequential [PSC]
boids=1600, ticks=2000, width=100.0, seed=999

B Naive [Octree

250
®
S 200
3
O
@
® 450
(3]
>
o
g 100
o 50.523
o 33.786b 30.188
g 50 15.557
B
'_

0

16 32

Threads

Spatial Hash
ATr 80.991
58.265" 57.672

64 128

LOCAL RESULTS:

The machine we used to evaluate locally is equipped with a Ryzen 7 3700X CPU, which has 8 cores and
16 total threads. As we were running our simulations in WSL, we did not have access to hardware
performance counters and thus did not report cache statistics for these tests.

One parameter we have yet to isolate and explore is simulation width. This parameter directly contributes
to the sparsity of the data, which we hypothesized that spatial binning would improve, by reducing the
number of neighbor candidates considered per each boid.

WIDTH = 25.0
Threads vs. Total Speedup [LOCAL] Threads vs. Total Speedup over Sequential [LOCAL]
boids=200, ticks=2000, width=25.0, seed=0 boids=200, ticks=2000, width=25.0, seed=0
M Naive [l Octree Spatial Hash M Naive [Octree Spatial Hash
8 8
s
b=
6] 6
o
o [
8 4 s 4
2] [}
= 3
o [
’_ 2 II II :.)_ 2 II II
s
o
.l = ,_ N
1 2 4 8 16 1 2 4 8 16
Threads Threads
WIDTH = 50.0
Threads vs. Total Speedup [LOCAL] Threads vs. Total Speedup over Sequential [LOCAL]
boids=200, ticks=2000, width=50.0, seed=0 boids=200, ticks=2000, width=50.0, seed=0
B Naive [Octree Spatial Hash B Naive [Octree Spatial Hash
8 8
s
=
6 g 6
o
o [
3 @
(7] [
2 4 3 4
2] o
3
o
._ 2 II ; 2 II
1 : 1
]
o
Al = ,_ il
1 2 4 8 16 1 2 4 8 16
Threads Threads

WIDTH = 100.0

Threads vs. Total Speedup [LOCAL]
boids=200, ticks=2000, width=100.0, seed=0

B Naive [Octree Spatial Hash

4

Total Speedup

| II II
1 2 4 8

Threads

Threads vs. Total Speedup over Sequential [LOCAL]
boids=200, ticks=2000, width=100.0, seed=0

B Naive [Octree Spatial Hash

4 II II
.—mfl ll II
1 2 4 8 16

Threads

N

Total Speedup over Sequential

As the results show, as the simulation boundaries expand, spatial binning further demonstrates its
advantage in sparse boid environments. When the simulation is tightly constrained, boids are extremely
likely to be neighbors with each other (especially for the default neighborhood radius = 10.0), so the
advantage of shortlisting candidate boids becomes less pronounced. For the octree and hash

implementations, this just means extra overhead just to manually double-check the near-same quantity of

candidate boids. As the space expands and boids
fly more freely, narrowing down the number of
initial candidate neighbors becomes much more
crucial.

Following this thread, we sweep over boid count
as well, this time keeping simulation width fixed
at 50. We see a similar trend, where the binning
algorithms show improved performance for
simulations involving higher boid counts. The
naive algorithm faces O(N?) candidates for each
simulation tick, while the octree and spatial hash
consider candidates on the order of O(NlogN)
every simulation tick.

We can conclude that our spatial binning
approaches are effective at handling increasing
simulation complexity, particularly boid counts
and simulation boundary size.

Two last parameters to sweep over are specific
to the binning implementations. As alluded to
prior, octrees are constrained to have capacity
for exactly 8 elements. In this experiment, we
sweep over boids allotted per octree node.

Boids vs. Total Speedup over Naive
ticks=2000, threads=16, width=50.0, seed=0
B Octree Spatial Hash

2.00

1.50

Speedup over Naive

1.00
- J I I
0.00
100 200 400 800

Boids

1600

Boids per Octant vs. Speedup [OCTREE]
boids=400, threads=16, ticks=2000, width=50.0, seed=0
1.25

1.00
0.75

0.50

Total Speedup

0.25

0.00

Boids per Octant

Overall, we see minimal difference between the allotments, but we choose capacity to be eight for all of
our other experiments.

Secondly, we sweep over spatial hash cell size. Cell size allows us to have some more precision when
developing a shortened list of neighborhood

candidates. The smaller we make the cell size,
the more certain we can be that the nearby
hashed cells contain boids within the working

Cell Size vs. Speedup [SPATIAL HASH]

. .. . 10.00
boid’s vision. However, as we decrease cell size, 9.92

we are also increasing the number of hash 8.00

9.38

lookups needed to find possible neighbors.
Hashing has poor locality, so decreasing the cell
size can lead to an extreme increase in expensive

6.00 6.52

4.00

Total Speedup

memory access. We try to find an appropriate 2,00

middle ground to conduct our results gathering 160
0.00

on. With these parameters, we determine that 8 2 4 8 16
is the best cell size. Cell Size

RESULTS CONCLUSION:

In our project proposal, we set out to accomplish the following set of objectives:
1. Optimize the boid simulation using binning techniques to reduce neighbor querying
2. Achieve an amortized algorithmic complexity of O(NlogN) for N boids
3. Ultimately achieve a total speedup of 10x over the sequential implementation on 8 cores,
surpassing the ideal 8x via intelligent shared memory usage

On all accounts, we have achieved these initial goals. We explored two different approaches, being
octrees and spatial hashing for improved neighbor querying, and presented results that demonstrate
impressive scaling for increasingly complex simulation schemes, such as increased boid counts and
simulation boundary sizes. For the 800 boids experiment on Bridges-2, we saw both the octree and hash
approaches attain speedups over 10x compared to the sequential implementation (naive only achieved
~4x), and in our most complex experiment of 1600 boids with simulation width = 100, octree and spatial
hashing improved significantly over the naive approach. Spatial hashing has shown itself to be very well
suited for this task, achieving a maximum 234x speedup on 128 threads in that experiment. For scaling
the simulation to larger widths and boid counts, hashing provides the best improvement with low
overhead and great pruning benefits. Our octrees approach could use some further optimization in octree
construction. Currently the construction is sequential, greatly hindering our capacity for speedup
especially as the simulation scales to more involved and complex scenarios. Further investigation will be
taken.

REFERENCES
[1]— Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer
Graphics, 21(4), 25-34.

[2] — Craig Reynold's Personal Website: Boids

[3] — Mastering Flock Simulation - Thomas Rouch
[4] — Thomas Rouch's Boids Simulator

[5] — Stefan Annell's Generic Oct/Quadtree

LIST OF WORK, CREDIT DISTRIBUTION

Josiah: Deterministic runs, benchmarking infrastructure (e.g. command-line arguments, timing, CSV
logs), octree approach, and all results gathering and graph creation.

Ryan: Naive parallelism, frame-rate and time-constrained benchmarking, spatial hashing approach

Total project credit should be distributed equally, 50% - 50%.

https://www.red3d.com/cwr/boids/
https://medium.com/better-programming/mastering-flock-simulation-with-boids-c-opengl-and-imgui-5a3ddd9cb958
https://github.com/ThomasParistech/boids
https://github.com/annell/octree-cpp

	
	
	
	
	
	
	
	PARALLELIZED BOID SIMULATION
	Josiah Miggiani, Ryan Huang

	
	SUMMARY
	BACKGROUND
	Spatial Hash:
	Octrees:

	APPROACH
	RESULTS
	RESULTS CONCLUSION:

	REFERENCES
	LIST OF WORK, CREDIT DISTRIBUTION

